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Effect of Fabric on the Strength of Granular Materials in 
Biaxial Compression 
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Abstract.  An equation is presented to unify the strength of granular materials in the presence of inherent and induced 
anisotropy. By applying a Fourier series that was developed to model fabric, direct incorporation of the fabric in the 
strength of granular materials is done. Based on the experimental data, in the presence of the same density, fabric is a main 
parameter to determine the shear strength of the granular materials. The difference between ��� ����

�
 for the specimens 

have a same density (or void ratio), is attributed to this equation. Applying this equation the different trends between the 
samples with different bedding angles can be simulated. Verifying with the experimental data reveals the validity of this 
formulation. 

Key words: fabric, inherent anisotropy, induced anisotropy, shear strength at failure 

PACS: 45.70.-n 

INTRODUCTION 

To connect the microscopic measure of the 
granular materials with the overall macroscopic 
anisotropy, various quantities have been 
introduced; for example, the anisotropy of fabric is 
defined by the distribution of the unit contact 
normal [1-3]. Mehrabadi et al. [4] introduced 
another fabric measurement and connected their 
relations to the overall stress and other mechanical 
characteristics of granular materials. Backer & 
Desai [5] proposed the so-called joint isotropic 
invariants of stress and appropriate anisotropic 
tensorial entities. By using this method a 
constitutive model was proposed to account fabric 
anisotropy. Direct incorporation the effect of fabric 
in the constitutive equations starts with the work of 
Wan and Guo [6]. They used the ratio of the 
components of the fabric tensor as an affective 
parameter to show the effect of fabric and its 
evolution during shearing mechanism. Li & 
Dafalias [7, 8] included fabric anisotropy in their 
constitutive model. They used the method which 
was originally proposed by Tobita [9] and Tobita 
and Yanagiwasa [10]. In this method the stresses 
were modified according to the fabric tensor 
components. The stresses deviate from their 
normal value to accommodate with the inherent 
fabric anisotropy.  

In this paper the effect of inherent and induced 
anisotropy is included in the ratio ��� ����

�
which 

is used as a strength parameter for the biaxial case. 
The effect of inherent anisotropy that is due to the 
particle shape and apparent long axes in its 

deposition is discussed and formulated. Induced 
anisotropy is accounted by the parameters that 
were proposed by Rothenburg and Bathurst [11]. 
These two factors are combined to show and 
models the effect of inherent and induced 
anisotropy in the failure strength of the granular 
materials. Finally, this formulation will be verified 
and simulated with the experimental tests which 
were conducted by Konishi et al. [12]. 

DEFINITION OF INHERENT 
ANISOTROPY 

Inherent anisotropy is attributed to the 
deposition and orientation of the long axes of 
particles [1, 3, 13, 14] and Yoshimine et al. [15] 
have shown that the drained and undrained 
response of sand and approaching to the critical 
state failure were actually affected by the direction 
of the principal stresses relative to the orientation 
of the soil sample. Wan and Guo [6] accounted the 
effect of inherent anisotropy in micro-level 
analysis by the ratio of projection of major to 
minor principal values of the fabric tensor along 
the direction of the principal stresses. Li & 
Dafalias [7, 8] incorporate this effect by the fabric 
tensor which was proposed by Oda and Nakayama 
[16]. These two methods used a same basic 
approach; they used the principal values of the 
fabric tensor in their formulations. However, 
micromechanical studies [13, 16] have shown that 
in the shearing process, the preferred orientation of 
the particles in a granular mass may undergo only 
small changes. Its value may well endure after the 
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onset of the critical state; hence, the fabric 
anisotropy renders the locus of the critical state 
line. In this paper cos2(�i- �o) is used to model the 
effect of inherent anisotropy. �i shows the variation 
of the contact normals with respect to the major 
principal stress; �o is the angle of deposition with 
respect to the major principal stress. Hence: 

     1 2( ) cos 2( )f iσ σ β β∝ − �                             (1)  
                                                       

DEFINITION OF STRESS-INDUCED 
ANISOTROPY

With increasing shear loads the contact normals 
tends to the concentrate in the direction of the 
major compressive stress. Contacts generated in 
compressive direction and disrupted in the tensile 
direction. These disruption and generation of the 
contact normals are the main cause of the induced 
anisotropy in the granular materials [13]. To 
include the fabric evolution (or induced 
anisotropy) a function in which changes of the 
contact normals is included must be defined. Wan 
and Guo [6] used the following equation: 

            ij ijF xη=� �                                              (2)                                                                                                            
, where 	
�� shows the evolution of fabric 
anisotropy, x is a constant, and 

��  is the ratio of 
the shear stress to the confining pressure, or 

 � �� �� �. Li and Dafalias [7] did not include the 
effect of fabric evolution in their constitutive 
equations. 

By using Fourier series Rothenburg and 
Bathurst [11] show that the distribution of the 
contact normals distribution, E(n), can be 
presented as follows: 

    ( ) (1 2 )(1 cos2( ))fE n π α θ θ= + −                   (3)                                                                                            
, where � is the magnitude of anisotropy, and �f is 
the major principal direction of the fabric tensor. 
The variations of the parameters � and �f show the 
evolution of anisotropy in the granular mass. 
Experimental data shows that the shear strength of 
the granular material is a function of the magnitude 
of � and �f [1, 12, 14]. The following equation is 
used to consider the effect of the induced 
anisotropy: 

1 2( ) (1 (1/ 2) cos 2( ))f fσ σ α θ θ∝ + −                    (4)                                                                                       
As mentioned before, the shear strength in the 

granular medium is a function of inherent and 
induced anisotropy. The equation can predict the 
difference between samples due to the fabric which 
is a combination of the inherent and induced 
anisotropy as follows: 

1 2( ) [(1 (1/ 2) cos 2( ))

cos 2( )]
f f

i

σ σ α θ θ
β β

∝ + −

− �                   (5)                                                                 
Another parameter that must be added to the 

above relation is the rolling strength of the granular 

material. It was shown that the rolling strength of 
the particles is important, especially in 2D case. 
This effect incorporated in the following form: 

1 2( ) [(1 (1/ 2) cos 2( ))

cos 2( ) exp(cos 2( ))]
f f

i im
σ σ α θ θ

β β β β
∝ + −

− −� �                  (6)                              
,where m is a constant that depends on the inter-
particle friction angle, �� and the shape of the 
particles. When the samples are subjected to the 
shear loads have a same density their difference in 
the shear strength due to the fabric can be 
attributed to the equation (6). 

VERIFICATION WITH THE 
EXPERIMENTAL DATA

To show the ability of the equation (6) to 
represents the effect of the fabric on the shear 
strength, this equation is verified with the 
experimental tests have done by Konishi et al. [12]. 
They conducted an experimental study on biaxial 
deformation of two dimensional assemblies of rod-
shaped photoelastic particle with oval cross 
section. The samples were confined laterally by a 
constant force 0.45 kgf and it was compressed 
vertically by incremental displacement. Two types 
of particle shape were used, one was r1/r2=1.1 and 
another was r1/r2 =1.4, in which r1 and r2 are the 
longer and the shorter axes of cross section 
respectively. To consider the influence of friction, 
two sets of experiments were performed on these 
two particle shapes, one with non-lubricated 
particles of average friction angle of 52o, the other 
with particles which had been lubricated in an 
average friction angle of 26o. The distributions of 
the contact normals of the assemblies for different 
samples were presented by Konishi et al. [12] 
could not be shown here because of the limit space.
The magnitude of the degree of anisotropy, � and 
the major direction of the fabric, �f are calculated 
by the following equations:  

     
2

0
( ) sin 2A E d

π
θ θ θ= �                                  (7)                                 

     
2

0
( )cos 2B E d

π
θ θ θ= �                                  (8)                                 

     (1/ 2) tan( / )f arc A Bθ =                               (9)                                 
To represent the ability of equation (6) in Fig.1 

the proportion of fabric with the shear strength 
variations are shown. The differences in the shear 
strength ratio at failure for different bedding angles 
are attributed to the differences in the developed 
anisotropic parameters. In other words, the 
combination of anisotropic parameters (for 
inherent and induced anisotropy) as the proposed 
form in Eq. (6), is proportion with the shear 
strength. The variation of right side of Eq. (6) is 
proportion with the variation of shear strength ratio 
for different bedding angles. The right side of 
Eq.(6) is shown by fabric anisotropy in Fig. 1. The 
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effect of bedding angle on stress ratio at failure for 
the different inter-particle friction angle �� is 
shown in Fig.2. By applying equation (6) 

differences between the stresses ratio at failure will 
be same for all the assemblies. 

     

FIGURE 1.   Samples with �� = 52o and r1/r2=1.1 (right-top), �� = 26o   and r1/r2=1.1 (left-top), �� = 52o  and r1/r2=1.4 
(right-bottom), �� = 26o  and r1/r2=1.4 (left-bottom) 

                 

FIGURE 2. Effect of bedding angle on stress ratio at failure for the model assembly (data form Konishi et al. [12])              
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CONCLUSION

An equation was proposed to include the effect 
of inherent and induced anisotropy. This relation 
obtained by combining the effect of inherent and 
induced anisotropy. Rolling resistance, also, 
included in this equation. The differences between 
the samples due to inherent and induced anisotropy 
captured well by applying equation (6).Verifying 
with the experimental data show that this equation 
can predict the ratio of the shear strength at failure 
of granular materials in the presence of inherent 
anisotropy as good as possible.  
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